shvarz: (Default)
[personal profile] shvarz
"Обычная" статистика (которую всем преподают в школе) задается вопросом: "Какова вероятность полученных данных при условии, что гипотеза А верна?" и отвергает гипотезу, если эта вероятность мала (но при этом ничего не говорит о вероятностях гипотезы А или альтернативных гипотез). Томас Байес в середине 18 века поставил вопрос иначе: "Какова вероятность гипотезы А исходя из полученных данных?" Это гораздо более интуитивно-понятный вопрос и часто нас интересует именно он, что ведет к тому, что всякие биологи вроде меня регулярно скатываются при обсуждении статистики к вероятностям той или иной гипотезы даже при использовании обычной, фреквентистской, статистики (что некорректно). Более того, байесовский подход в его краткой форме даже звучит более логично: Мы начинаем с неких предположений о том, что вероятно, а что нет, потом делаем эксперимент и используем его результаты для того, чтобы уточнить наши начальные предположения. Но история байсовского подхода, изложенная в этой книге, полна эпизодами, когда статистики его категорически отвергали или даже объявляли окончательно дискредитированным и похороненным навсегда (отсюда и название книги).

В некотором роде история Байеса повторяет историю Менделя. Открытие его не получило должного признания после публикации и имя Байеса оказалось бы забытым, если бы не его друг Прайс, который вскользь упомянул о нем Лапласу. Математический гений своего времени, Лаплас независимо пришел к вопросу о вероятностях гипотез, но не знал что делать, если до эксперимента мы не имеем ни малейшего представления о его возможных результатах. Прайс указал Лапласу, что Байес в таком случае просто считал, что все гипотезы равновероятны. Собственно Лаплас и был настоящим основополагателем байесовской статистики, расширив решение частной проблемы над которой работал Байес, до общих принципов. Но после смерти Лапласа в 1827 году теория пришла в упадок и чуть было не оказалась забыта. Более того, байесовский подход приобрел даже дурную репутацию. Проблема была в том, что байсовский подход имеет ряд преимуществ в ситуациях, когда статистических данных очень мало и приходится субъективно оценивать начальные ("до-эксперимента") вероятности гипотез. Этот субъективизм стал неприличным словом, поскольку упор в статистике был на получение как можно более объективной картины.

В начале 20 века байесовский подход вообще ушел в подполье. Именно тогда был расцвет фреквентистской статистики - Фишер, Пирсон, Райт категорически отвергали байеса. Однако интересно, что несмотря на изгнание байеса из теоретической статистики, он начал использоваться на практике - в экономике, в политике. Забавно, что формулы оценки риска, использовавшиеся страховыми компаниями, были основаны на байесе, о чем страховые агенты даже не подозревали. Даже когда люди осознанно использовали байесовский подход, они предпочитали замалчивать этот факт и называли его каким-нибудь иным словом. Что интересно, одними из основных пользователей байесовской методологии оказались военные. И в первой и во второй мировой войне англичане и американцы использовали байесовские методы для самых разных целей: проверки качества снарядов, пристрелки орудий, нахождения подводных лодок. Одним из самых важных применений байеса была расшифровка Тюрингом немецких шифровок, созданных машинами Enigma. Однако большинство этих работ были засекречены и поэтому о пользе байеса за пределами математиков, работавших на военку, никто не знал.

Постепенно однако байес "вышел из чулана" и во второй половине 20 века стал появляться в виде вполне легитимной теории. Настоящий же его расцвет произошел в 80-х годах по двум причинам. Во-первых, развитие компьютеров позволило производить сложные вычисления, необходимые при байесовском подходе. Во-вторых, развитие цепей (или последовательностей?) Маркова позволило упростить многие байесовские вычисления и преодолеть ряд теоретических проблем теории. Сейчас байесовский подход используется очень широко в самых разных областях. Например, в экономике он помогает делать прогнозы продаж, а в интернете используется для фильтрования спама и машинного перевода текста.

В своей книге МкГрейн подробно и довольно интересно описывает всю историю байесовского подхода с массой примеров и с хорошим описанием людей, оказавших влияние на развитие статистики. К сожалению, о самой теории она не говорит почти ничего и понять чем же именно так хорош байесовский подход по этой книге невозможно. Он там появляется как deus ex machina, магическим образом решая сложные проблемы. Вся книга построена по модели: "В году Х была проблема Y и никто не знал, как ее решить. Но математик Z применил байесовский подход и проблема тут же оказалась решена." Поэтому при чтении создается впечатление, что все эти истории являются Just So Stories - красивыми сказками, без реального подтверждения того, что байес сыграл в них действительно важную роль. Может быть и действительно предсказания сделанные байесовским методом были лучше, чем какие-либо иные, но без объяснения подлежащей логики создается ощущение, что реальную эффективность никто не измерял или же что намеренно были отобраны истории в которых байес сработал. В общем, эту книжку стоит читать тем, кто хотя бы поверхностно знаком с байесовским методом и кому интересна история его развития. Я некоторые части прочитал с интересом, а некоторые пролистал. 3.5-4 звездочки из пяти.

Date: 2012-05-01 02:42 pm (UTC)
From: [identity profile] kit58.livejournal.com
В Англии обосновалась российская команда кристаллографов. Они написали программу по оптимизации структур refmac на байесовском подходе (maximum likelihood). У одного из авторов Алексея Вагина есть страничка со всякими карикатурами - вот одна из них в тему поста:

Likelihood

Date: 2012-05-01 02:49 pm (UTC)
From: [identity profile] shvarz.livejournal.com
Это какой-то очень математический юмор. До меня не доходит.

Date: 2012-05-01 02:56 pm (UTC)
From: [identity profile] kit58.livejournal.com
Ну тут наоборот совсем без математики. Научная общественность ослы, все восторгаются, Байесом, но никто не понимает (НЛО).

Date: 2012-05-01 02:58 pm (UTC)
From: [identity profile] shvarz.livejournal.com
Мизантроп ваш Леша, однако...

Date: 2012-05-01 03:40 pm (UTC)
From: [identity profile] luybu.livejournal.com
Странно Буридановых ослов должно быть чётное количество!

Date: 2012-05-01 08:23 pm (UTC)
From: [identity profile] misha-makferson.livejournal.com
В таком случае один из ослов не Буриданов. :-)

Date: 2012-05-02 05:46 am (UTC)
From: [identity profile] luybu.livejournal.com
Засланный!

Date: 2012-05-01 08:02 pm (UTC)
From: [identity profile] vasja-iz-aa.livejournal.com
спасибо. теперь я знаю, кто эту замечательную картинку нарисовал
http://www.ysbl.york.ac.uk/~alexei/tutorial/fig19.jpg

Date: 2012-05-01 08:04 pm (UTC)
From: [identity profile] shvarz.livejournal.com
Вы прямо созданы друг для друга :)

Date: 2012-05-01 08:11 pm (UTC)
From: [identity profile] vasja-iz-aa.livejournal.com
это очень вряд ли, я посмотрел остальное и остался равнодушен

Date: 2012-05-01 08:13 pm (UTC)
From: [identity profile] shvarz.livejournal.com
Гениально! Я уверен, что если бы он посмотрел на ваше "остальное", то пришел бы к точно такому же выводу!

Date: 2012-05-01 08:27 pm (UTC)
From: [identity profile] vasja-iz-aa.livejournal.com
вряд ли остался равнодушен. судя по его остальному, такому как флаг или , он бы от моего остального был бы сильно недоволен. впрочем, охотно признаю, что половины его картинок я просто не понял, так что предсказатель из меня никакой

очень не удивлюсь, что и на понравившуюся мне картинку я смотрю не тем взглядом, который автором предполагался

Date: 2012-05-01 08:28 pm (UTC)
From: [identity profile] vasja-iz-aa.livejournal.com
ili structural genomics

Date: 2012-05-01 10:08 pm (UTC)
From: [identity profile] chupvl.livejournal.com
да, действительно мизатропные карикатуры :)

December 2013

S M T W T F S
1234567
891011121314
15161718192021
22232425262728
293031    

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated May. 29th, 2025 04:18 pm
Powered by Dreamwidth Studios